Code No.: 14248 O

## VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

## B.E. (C.S.E./AIML) IV-Semester Backlog Examinations, August-2022

## Automata, Languages and Computation

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A  $(10 \times 2 = 20 \text{ Marks})$ 

| Q. No. | Stem of the question                                                                                                                        | M | L | CO | PO    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|-------|
| 1.     | Design a Finite automata that accepts only the words – baa, ab and abb and no other strings longer or shorter.                              | 2 | 2 | 1  | 1,2   |
| 2.     | Describe the language recognized by the following automata.                                                                                 | 2 | 2 | 1  | 1,2   |
|        | 0,1                                                                                                                                         |   |   |    |       |
| 3.     | List any 4 closure properties of Regular languages                                                                                          | 2 | 1 | 2  | 1,2   |
| 4.     | Write the context free grammar for the language of even length palindromes over the alphabet {a,b}.                                         | 2 | 3 | 2  | 1,2   |
| 5.     | Differentiate between finite automata and pushdown automata.                                                                                | 2 | 2 | 3  | 1,2   |
| 6.     | Define pumping lemma for Context free languages.                                                                                            | 2 | 1 | 3  | 1     |
| 7.     | What is the significance of context sensitive grammar?                                                                                      | 2 | 1 | 4  | 1     |
| 8.     | Define the instantaneous description of a turing machine.                                                                                   | 2 | 1 | 4  | 1     |
| 9.     | What are Recursively enumerable Languages?                                                                                                  | 2 | 1 | 5  | 1     |
| 10.    | Differentiate between PCP and MPCP.                                                                                                         | 2 | 1 | 5  | 1     |
|        | Part-B (5 $\times$ 8 = 40 Marks)                                                                                                            |   |   |    |       |
| 11. a) | Differentiate among DFA, NFA and epsilon-NFA.                                                                                               | 4 | 2 | 1  | 1,2   |
| b)     | Convert the following NFA to DFA and also describe the language accepted by it. Check whether the input:0110 is accepted by the DFA or not. | 4 | 3 | 1  | 1,2,3 |
|        | $0,1$ $q_0 \qquad 1 \qquad q_1 \qquad 0$ $q_2 \qquad q_2$                                                                                   |   |   |    |       |
| 12. a) | Prove that the $L = \{a^ib^i \mid i \ge 0\}$ is not a regular language.                                                                     | 4 | 3 | 2  | 1,2   |
| b)     | Minimize the following DFA and draw the transition diagram for the minimized DFA.                                                           | 4 | 3 | 2  | 1,2   |
|        |                                                                                                                                             |   |   |    |       |

Code No.: 14248 O

| 13. | a) | Construct a PushDown Automata that accepts the language $L = \{ wcw^R \mid w = (a+b)^* \}$ and check whether the string abbca is accepted by the designed PDA. | 4  | 3 | 3 | 1,2,3 |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
|     | b) | Convert the given CFG to CNF. Consider the given grammar G1:                                                                                                   | 4  | 3 | 3 | 1,2,3 |
|     |    | $S \rightarrow a \mid aA \mid B$                                                                                                                               |    |   |   |       |
|     |    | $A \rightarrow aBB \mid \epsilon$                                                                                                                              |    |   |   |       |
|     |    | $B \rightarrow Aa \mid b$                                                                                                                                      |    |   |   |       |
| 14. | a) | Explain the different types of Turing machines.                                                                                                                | 4  | 1 | 4 | 1     |
|     | b) | Design a Turing machine that accepts the language $L=\{0 \text{ n} 1 \text{ n} 2 \text{ n} \mid \text{n} \geq 1\}.$                                            | 4  | 3 | 4 | 1,2   |
| 15. | a) | Explain Satisfiability problem.                                                                                                                                | 4  | 2 | 5 | 1     |
|     | b) | State Post correspondence problem (PCP) and find whether given instances of PCP has solution or not.  List A List B                                            | 4  | 3 | 5 | 1,2,3 |
|     |    | wi xi                                                                                                                                                          |    |   |   |       |
|     |    | 1 10 101                                                                                                                                                       |    |   |   |       |
|     |    | 2 01 1                                                                                                                                                         |    |   |   |       |
|     |    | 3 101 01                                                                                                                                                       |    |   |   |       |
| 16. | a) | Draw the DFA for the regular expression (a b)*abb                                                                                                              | 4  | 3 | 1 | 1,2   |
|     | b) | Check whether the given grammar is ambiguous or not.                                                                                                           | 4  | 3 | 2 | 1,2   |
|     | -) | $S \rightarrow SS$                                                                                                                                             |    |   |   |       |
|     |    | $S \rightarrow a$                                                                                                                                              |    |   |   |       |
|     |    | $S \rightarrow b$                                                                                                                                              |    |   |   |       |
| 17. |    | Answer any two of the following:                                                                                                                               |    |   |   |       |
|     | a) | Consider the following grammar and check the acceptance of string w = baaba using CYK Algorithm-                                                               | 4  | 3 | 3 | 1,2   |
|     |    | $S \rightarrow AB / BC$                                                                                                                                        |    |   |   |       |
|     |    | $A \rightarrow BA/a$                                                                                                                                           |    |   |   |       |
|     |    | $B \rightarrow CC / b$                                                                                                                                         |    |   |   |       |
|     |    | $C \rightarrow AB/a$                                                                                                                                           |    | 2 | 4 | 1.0   |
|     | b) | How does Turing Machines work as Transducers? Explain with an example.                                                                                         | 4  | 2 | 4 | 1,2   |
|     | c) | Describe about the class P and NP problems and give an example for each.                                                                                       | `4 | 2 | 5 | 1,2   |

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

| i)   | Blooms Taxonomy Level – 1     | 20% |
|------|-------------------------------|-----|
| ii)  | Blooms Taxonomy Level – 2     | 30% |
| iii) | Blooms Taxonomy Level – 3 & 4 | 50% |

\*\*\*\*